The “Mobius” Slate Implementation Manual

Brian T. Rice and Lee Salzman

8th August 2004

Abstract

We introduce the various implementation mechanisms, structure, and
their usage within the Slate system. This also gathers all notes about the
implementation details, so that users of the system have a relatively easy
entry into developing their own extensions or uses.

Contents
1 Overview 3
2 Front-End 3
2.1 Lexer e e e 3
2.2 Parser e e e e 3
2.3 Code-walking 3
24 MaCros v i e e e e e e e e 3
2.5 Modes e e 3
3 Memory Usage and Layout 3
3.1 Memory Structure Formats 3
3.1.1 Pointers 0. 3
3.1.2 Headers 4
3.1.3 Objects 4
314 Arrayso 4
3.1, Maps e 5
3.16 Methods 6
3.2 Core Resident Structures 6
3.3 Memory-Management 6
3.3.1 Generational Mode 6
3.3.2 Non-moving Mode 6
3.4 Interaction Structures 6
3.4.1 External Resource Handles 6
342 FFI e 6

4 C Translator and Dialect 6
4.1 Overview e e e 6
4.2 Conventions i i it e 7
4.3 Restrictionso 7
4.4 Special Methodso 8

4.4.1 Arithmetic / Logical Operators 8
4.4.2 Conditionals 8
443 TIteration 8
444 Memory ACCesS 8

5 Bytecode Execution Engine 9

5.1 Context Management 9
5.1.1 Stack Format 9
5.1.2 Establishment. 9
5.1.3 Disestablishment 10

5.2 Primitives e 10

5.3 Native Methods 10

6 Optimizing Compiler 12
6.1 Intermediate Representation 12
6.2 Machine Representation 12
6.3 Optimizer 12
6.4 Back-End 12

List of Tables

Lexical Context Format

Frame Format,

Block Format

[IR

Normal Opcodes
Extended Opcodes

1 Overview

Slate’s implementation is designed to provide an open and flexible means of
extending and maintaining the system. The ability to run code optimally is an
important factor in the design, but the overriding principles are to be portable
and generic. Most importantly, the design tries to avoid making any design
decisions too firmly assumed; that is, that the coupling between subsystems
is loose, and particular design choices are (or should be) localized as much as
possible.

2 Front-End

The implementation front-end works with source code from user input until
it is converted into a form directly consumable for execution. All of these
components are within the Syntax namespace.

Source-code parsing is performed by a two-stage system: incoming text from
a stream is lexified into tokens, its external protocol being a stream of tokens.
The parser is a further ProcessorStream of this token stream; users of the
parser are provided with a stream of parse-node objects which represent the
abstract syntax tree of Slate source. The compilers and other source tools work
on the output of this stream.

2.1 Lexer

2.2 Parser

2.3 Code-walking
2.4 Macros

Macro-level method calls are evaluated and replaced in place with the call
macroExpand, working recursively on whatever node is the argument.

2.5 Modes

3 Memory Usage and Layout

Part of the abstract machine design involves providing a layer of safe references
and arithmetic, as well as defining the expected layout of targets of references.

3.1 Memory Structure Formats

3.1.1 Pointers

Object pointers are tagged with one bit, in the low end. A one value indicates a
Smalllnteger direct value stored in the remaining bits, a signed 31-bit (word-size

minus one) value with negatives in twos-complement format. A value of zero
indicates a reference to an object on the heap.

3.1.2 Headers

Objects and other complex heap structures begin with a single-word header.

The format:
| Bit/Range | Interpretation |

0 GC Mark Flag
1 Forwarding Flag
2...23 Identity-based Hash
24...29 Object Size
30...31 Format Code
The format codes are as follows:
| Code | Interpretation
00 Normal Object
01 Array of ObjectPointers
10 Array of Byte Values
11 | Payload - Mixed Slots and Array

“Payload” style objects contain an extra word, the low 30 bits of which are
a size field denoting the number of slots. The high two bits are another format
code for the payload itself.
3.1.3 Objects

The word format:

| Word | Interpretation |
0 Header
1 Map Pointer
27 Optional Extended Object Size
2 Slot Value Pointer 0
2+N Slot Value Pointer N

The slot values are stored in offsets specified by the object’s map. The
object format includes an optional extended size field before the slot values if
the header’s size field is maximized; that is, if its value is 255.

Delegate slots are stored in a contiguous block before non-delegating data
slots.

3.1.4 Arrays

The word format:

| Word | Interpretation |

0 Header

1 Map Pointer

27 Optional Extended Array Size

2 Element Value Pointer 0
2+N Element Value Pointer N

This is adjusted for the word-size for the element type, say for a FloatArray
or ByteArray. There is an optional extended size field just as for ordinary
objects. The map pointer will refer to one of the VM-known array map objects.

3.1.5 Maps
The word format:
| Word /Range | Interpretation
0 Header

1 Representative Object

2 Number of Delegation Slots
3 Number of Data Slots
4

5

Pointer to the Method Dependency Array
Oldest Generation of Weak References

6-7 Method Dispatch ID (a serial)
8 Visited Position Bitmask
9 Pointer to the Slot Entry Array
10 Pointer to the Role Entry Array

Slot Entries The slot entry word format:
| Word | Interpretation |
0 Slot Name Pointer
1 Slot Offset within the Object
The slot entry array word format (with optional extended size field):
| Word [Interpretation |
0 Header
1 Slot Entry 0
1+3*N | Slot Entry N

Role Entries The role entry word format:

| Word | Interpretation |
0 Role Position Bitmask
1 Dispatch Position Bitmask
2 Method Pointer

The role entry array word format (with optional extended size field):

| Word [Interpretation |
0 Header
1 Role Entry 0
1+ 3*N | Role Entry N

3.1.6 Methods
Word format additions (to... ?):

| Word /Range | Interpretation |
0-1 Dispatch ID
2 Dispatch Position Mask
3 Found Roles Position Bitmask
4 Dispatch Rank

3.2 Core Resident Structures

3.3 Memory-Management
3.3.1 Generational Mode (Not Fully Tested)

Slate has an incremental 2-generation garbage collector, using a mark-sweep-
compact algorithm at its core, coded to avoid the need for a mark-stack. There
is also a facility for relocating objects efficiently using forwarding blocks. Gen-
eral care has been taken to separate memory structure format details from the
algorithms themselves, to provide some modularization or pluggability of mem-
ory formats.

3.3.2 Non-moving Mode

A simple memory manager (garbage collector) is provided which performs a
mark-sweep-compact series of phases, with a tracked root-set and a card-marking
mechanism to allow for low-level references into the heap to be handled safely
and efficiently (objects marked will not be re-located automatically). This mode
is as simple as it is for debugging and embedding simplicity.

3.4 Interaction Structures

3.4.1 External Resource Handles
3.4.2 FFI

4 C Translator and Dialect

4.1 Overview

A dialect is defined for translation of basic Slate programs which have a low-level
semantics into safe, understandable, almost-idiomatic C programming language
source code for quick portability across platforms.

4.2 Conventions

e Method definitions are not evaluated, just parsed and translated. Every-
thing else is evaluated with a special treatment for type annotations.

e Prototypes are converted into C-structure types, using slots to specify
structure elements and their types.

e Traits-installed slots are converted into globals, with the traits-name prepended
to the name.

e Namespace-installed slots are converted into globals.
e Traits-installed immutable slots are converted into (symbolic) constants.

e Unary messages sent are translated into direct structure access wherever
it is appropriate.

e Method names are “flattened” into C function names. Keyword selec-
tors wind up with underscores substituted for colons, argument names
transferred, and dispatches are handled by inserting the type’s name at
the appropriate position before an underscore. Binary selectors defined
in the source are translated into English names with the same scheme
about argument dispatches. For reference, calling C SimpleGenerator
cFunctionNameFor: selector on: roles will answer the target name.

e Inlining occurs on a simple heuristic per method definition. The heuristic
is that any method with a parse-node count of less than 10 and call count
of less than 200 is immediately inlined. An annotation mechanism for the
user to assist is also provided.

e Type annotations are limited. Basic C integer types may be attributed,
or Smalllnt direct values or pointers to structure type instances. These
type annotations on expressions and explicit cast calls following type-
annotations are changed into casts that comply with this scheme.

4.3 Restrictions

e Blocks may be used, but currently they may not be passed around as
arguments to arbitrary methods.

o Inheritance is single-parent and static.

e Definitions are collected into modules to help determine consistency before
generation.

e Dispatch is static. The dispatch must resolve to the appropriate C function
name to result from the translation. If there is any ambiguity, an error
should be raised during compilation for now.

e All definitions are statically type-checked, although simple automatic in-
ference assists in minimizing the necessary impact of type annotations.

4.4 Special Methods
4.4.1 Arithmetic / Logical Operators

+,-,%,/ generate C arithmetic operators. Self-assignments of any kind using
appropriate math operators will generate operator-assignments in C.

bitAnd:,bit0Or:,bitNot generate bitwise logical operators.

min:,max: generate conditional calls to return minimum/maximum of argu-
ments.

4.4.2 Conditionals

ifTrue:,ifFalse:,ifTrue:ifFalse: generate appropriate if-then-else statements,
or conditional expressions if the source expression is embedded in another.

case0f:,case0f :otherwise: generate an appropriate case-statement.
isNil,isNotNil,ifNil:,ifNotNil:,ifNil:ifNotNil: combine a null-test with

conditionals.

4.4.3 Iteration

to:by:do:,upTo:do:,downTo:do:,below:do:,above:do: generate appropriate
arithmetic-iteration for-loops.

whileTrue:,whileFalse:,whileTrue,whileFalse,loop generate appropriate while
loops.

break sent to the current context will generate a loop iteration-breaking state-
ment.

4.4.4 Memory Access

address generates a C address-of operator.

load generates a C dereferencing operator.

store: generates an assignment to the target of a pointer.

cast sent to a type-annotated expression to perform a C-style cast.
at:,at:put: generate a C array access/assignment.

longAt:,longAt:put: generate a word-oriented array access/assignment.

Table 1: Lexical Context Format
| Word Offset | Interpretation | Type

0 Block Method or Block
1 Frame Frame Pointer (or Nil)
2 Variable 0
2+N-1 Variable N - 1
Table 2: Frame Format
| Word Offset | Interpretation Type |
-N Return Instruction Pointer Fixed Integer
-N+1 Variable 0
-1 Variable N - 1
0 Previous Frame Fixed Pointer
1 Currently Executing Block | Method or Block
2 Lexical Context Pointer (or Nil)

5 Bytecode Execution Engine

5.1 Context Management

5.1.1 Stack Format

The stack is an object array, which grows upward.

NOTE: Input variables precede local variables in stack frame.

Method format inherits fields from block format, prefixed by a pointer to
the Selector (a pointer to a Symbol).

5.1.2 Establishment

1. Overwrite selector with return instruction pointer on stack.

Table 3: Block Format
Interpretation | Type
Fixed Integer
Fixed Integer
Fixed Integer

| Word |
0 Input Variables Count
Local Variables Count
Free Variables Count

Environment

(Pointer to) Namespace

Lexical Window

Array of Free Variable Arrays or Nil

Literal Array

Array of Literals or Nil

Selector Array

Array of Symbols or Nil

Code Array

ByteArray of Instructions

QO ~J| | U x| WD =

Syntax Tree

SyntaxNode or Nil

2. Allocate space for variables on stack.
Put current stack pointer in frame pointer.
Push previous frame pointer on stack.

Push block or method on stack.

A

If block needs free variables allocated,
allocate lexical context and push on stack
otherwise push Nil on stack.

5.1.3 Disestablishment

1. If lexical context is not Nil ,
set frame pointer in lexical context to Nil.

2. Temporarily save top of stack as result value.
Set stack pointer to frame pointer.
Set frame pointer to previous frame pointer.

Pop return instruction pointer from stack into instruction pointer.

S ok W

Push result value on stack.

5.2 Primitives

Opcodes have two different schemes for format. Normal opcodes are decoded
by the bottom 4 bits of the byte, and use the top 4 bits to encode an immediate
value argument. Extended opcodes have 0xF in the low-order bits, and encode
the operation in the high-order bits.

Immediate values are encoded as follows: if the value is less than 14, it
is stored directly in the high-order 4 bits of the opcode byte. If not, the
high-order bits are set to 0xF (15) and each next byte is added to that value
through the first non-filled byte (the first value not having its high bit set, i.e.
x bitAnd: 128/0x80); the result is the immediate value.

5.3 Native Methods

Slate primitive bytecodes are deliberately restricted to control-flow: stack op-
erations, jumps, and messaging primitives for sending and resending. All other
core primitive methods are termed native methods, and only operate on heap
objects. Core native methods are currently defined within the virtual machine,
but it is intended that any part of the runtime be able to supply its own native
methods.

10

Table 4: Normal Opcodes

| Opcode | Name | Immediate Value | Interpretation
0 Invoke Message Argument Count
1 Load Variable Variable Index
2 Store Variable Variable Index
3 Load Free Variable Lexical Offset Next Byte: Free Variable Index
4 Store Free Variable Lexical Offset Next Byte: Free Variable Index
5 Load Literal Literal Index
6 Load Selector Selector Index
7 Pop Pop Count
8 Push Array Array Size
9 New Block Literal Block Index
A Branch Keyed Literal Table Index
B Message Invocation w/Optionals | Argument Count
C Non-Local Return Lexical Offset
D Push Integer Integer
E (unused)
F Extended... Extended Opcode
Table 5: Extended Opcodes
| Opcode | Name | Interpretation |
0 Jump 16-bit signed displacement follows
1 Branch If True 16-bit signed displacement follows
2 Branch If False 16-bit signed displacement follows
3 Push Environment
4 Resend
5 Push Nil
6 Identity Equals
7 Push True
8 Push False

11

6 Optimizing Compiler

6.1
6.2
6.3
6.4

Intermediate Representation
Machine Representation
Optimizer

Back-End

12

