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1 Introduction

Slate is a member of the Smalltalk family of languages which supports an object
model in a similar prototype-based style as Self[Ungar et al 95], extended and re-
shaped to support multiple-dispatch methods. However, unlike Self, Slate does
not rely on a literal syntax that combines objects and blocks, using syntax more
akin to traditional Smalltalk. Unlike a previous attempt at providing prototype-
based languages with multiple dispatch[Chambers 97], Slate is dynamic and more
free-form in style, supporting the simplicity and flexibility of syntax and environ-
ment of the Smalltalk family. It is intended that both Smalltalk and Self styles of
programs can be ported to Slate with minimal effort. Finally, Slate contains ex-
tensions including optional keywords, optional type-declarations, subjective dis-
patch and syntactic macros, that can be used to make existing programs and
environment organizations much more powerful than in traditional object-based
programming.

Conventions

Throughout this manual, various terms will be highlighted in different ways to
indicate the type of their significance. If some concept is a certain program-
ming utility in Slate with a definite implementation, it will be formatted in a
typewriter-style. If a term is technical with a consistent definition in Slate,
but cannot have a definite implementation, it will be set in SMALL CAPITAL LET -
TERS. Emphasis on its own is denoted by italics. When expression/result patterns
are entered, typewriter-style text will be used with a Slate> prompt before the
statement and its result will be set in italicized typewritten text below the
line.

Terms

Slate is an object-oriented language, and as such works with some terms worth
describing initially for clarity. These are primarily inspired by the metaphor of
computational entities which communicate via messages, as follows:

Object some thing in the system that can be identified.

Method some behavior or procedure that is defined on some objects or class of
objects.

Message the act of requesting a behavior or procedure from some objects, the
message’s arguments.

Answer the response to a message; a value that expressions evaluate into.

Selector the name of a method or a message-send.
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Inheritance a relationship between objects that confers one object’s (the parent)
behavior on another (the child).

Dispatch the process of determining, from a message-send, what method is ap-
propriate to invoke to implement the behavior.

2 Language Reference

2.1 Objects

OBJECTS are fundamental in Slate; everything in a running Slate system consists
of objects. Slate objects consist of a number of slots and roles: slots are map-
pings from symbols to other objects, and roles are a means of organizing code
that can act on the object. Slots themselves are accessed and updated by a kind
of message-send which is not distinguishable from other message-sends syntacti-
cally, but have some important differences.
Objects in Slate are created by cloning existing objects, rather than instantiating a
class. When an object is cloned, the created object has the same slots and values
as the original one. The new object will also have the access and update methods
for those slots carried over to the new object. Other methods defined on the object
will propagate through an analogue of a slot called a role, explained in section 2.3
on Methods.
Both control flow and methods are implemented by specialized objects called
blocks, which are code closures. These code closures contain their own slots
and create activation objects to handle run-time context when invoked. They can
also be stored in slots and sent their own kinds of messages.

2.1.1 Code Blocks

A code block is an object representing an encapsulable context of execution, con-
taining local variables, input variables, the capability to execute expressions se-
quentially, and finally answers a value to its point of invocation. The default
return value for a block is the last expression’s value; an early return can override
this.
Blocks have a special syntax for building them up syntactically. Blocks can specify
input slots and local slots in a header between vertical bars (||), and then a
sequence of expressions which comprises the block’s body. Block expressions are
delimited by square brackets. The input syntax allows specification of the slot
names desired at the beginning. For example,

Slate> [| :i j k | j: 4. k: 5. j + k - i].
[]

creates and returns a new block. Within the header, identifiers that begin with
a colon such as :i above are parsed as input slots. The order in which they are
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specified is the order that arguments matching them must be passed in later to
evaluate the block. If the block is evaluated later, it will return the expression
after the final stop (the period) within the brackets, j + k - i. In this block, i
is an input slot, and j and k are local slots which are assigned to and then used
in a following expression. The order of specifying the mix of input and local slots
does not affect the semantics, but the order of the input slots directly determines
what order arguments need to be passed to the block to assign them to the correct
slots.

Using the term "slot" for local and input variables is not idle: the block is an actual
object with slots for each of these variables, and accessors defined on them which
are even callable from outside the block, considering it as an object.

In order to invoke a block, the client must know how many and in what order it
takes input arguments. Arguments are passed in using one of several messages.
By evaluating these messages, the block is immediately evaluated, and the result
of the evaluation is the block’s execution result.
Blocks that don’t expect any inputs respond to do, as follows:

Slate> [| a b | a: 4. b: 5. a + b] do.
9

Blocks that take one, two, or three inputs, each have special messages applyWith:,
applyWith:with:, and applyWith:with:with: which pass in the inputs in the
order they were declared in the block header. Every block responds properly to
applyTo: however, which takes an array of the input values as its other argu-
ment.

Slate> [| :x :y | x quo: y] applyWith: 17 with: 5.
3
Slate> [| :a :b :c | (b raisedTo: 2) - (4 * a * c)]
applyTo: {3. 4. 5}.
-44

If a block is empty, contains an empty body, or the final expression is terminated
with a period, it returns Nil when evaluated:

Slate> [] do.
Nil
Slate> [| :a :b |] applyTo: {0. 2}.
Nil
Slate> [3. 4.] do.
Nil

Blocks furthermore have the property that, although they are a piece of code and
the values they access may change between defining the closure and invoking it,
the code will “remember” what objects it depends on, regardless of what context it
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may be passed to as a slot value. It is called a lexical closure since it “closes over”
the environment and variables used in its definition, the lexical context where it
was born. This is critical for implementing good control structures in Slate, as is
explained later. Basically a block is an activation of its code composed with an
environment that can be saved and invoked (perhaps multiple times) long after it
is created, and always do so in the way that it reads where it was defined.

2.1.2 Slot Properties

Slots may be mutable or immutable, and explicit slots or delegation (inheritance)
slots. These four possibilities are covered by four primitive methods defined on all
objects.
Slate provides several primitive messages to manage slots:

object addSlot: slotSymbol adds a slot using the symbol as its name, initial-
ized to Nil.

object addSlot: slotSymbol valued: val adds a slot under the given name
and initializes its value to the given one.

object removeSlotNamed: slotSymbol removes the slot with the given name
on the object directly and returns whatever value it had.

object addDelegate: slotSymbol and object addDelegate: slotSymbol valued: val
add a delegation slot, and initialize it, respectively. It is recommended to use
the latter since delegation to Nil is unsafe.

Each of the these has a variant which does not create a mutator method for its
slot: addImmutableSlot:valued: and addImmutableDelegate:valued:.

2.2 Expressions

Expressions in Slate mostly consist of message-sends to argument objects. The
left-most argument is not considered an implicit receiver as it is with most message-
passing languages, however.
An important issue is that every identifier is case-sensitive in Slate, that is, there
is a definite distinction between what AnObject, anobject, and ANOBJECT de-
note even in the same context. Furthermore, the current implementation is
whitespace-sensitive as well, in the sense that whitespace must be used to sep-
arate identifiers in order for them to be considered separate. For example, ab+4
will be treated as one identifier, but ab + 4 is a message-send expression.
There are three basic types of messages, with different syntaxes and associativi-
ties: unary, binary, and keyword messages. Precedence is determine entirely by
the syntactic form of the expression, but it can of course be overridden by enclos-
ing expressions in parentheses. An implicit left-most argument can be used with
all of them. The default precedence for forms is as follows:
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1. Literal syntax: arrays, blocks, block headers, statement sequences.

2. Unary message-sends.

3. Binary message-sends.

4. Keyword message-sends.

A concept that will be often used about message-sends is that of the name of a
message, its SELECTOR. This is the symbol used to refer to the message or the
name of a method that matches it. Slate uses three styles of selectors, each with
a unique but simple syntax.

2.2.1 Unary Message-sends

A UNARY MESSAGE does not specify any additional arguments. It is written as a
name following a single argument; it has a post-fix form.
Some examples of unary message-sends to explicit arguments include:

Slate> 42 print.
’42’
Slate> ’Slate’ clone.
’Slate’

Unary sends associate from left to right. So the following prints the factorial of 5:

Slate> 5 factorial print.
’120’

Which works the same as:

Slate> (5 factorial) print.
’120’

Unary selectors can be most any alpha-numeric identifier, and are identical lexi-
cally to ordinary identifiers of slot names. This is no coincidence, since slots are
accessed via a type of unary selector.

2.2.2 Binary Message-sends

A BINARY MESSAGE is named by a special non-alphanumeric symbol and ’sits be-
tween’ its two arguments; it has an infix form. Binary messages are also evaluated
from left to right; there is no special precedence difference between any two binary
message-sends.1

These examples illustrate the precedence and syntax:
1This removes a source of grammatical complexity in a language where anyone can add new binary

selectors or implementations. It is our policy that conventional mathematical notation and visual
convenience belong in user interface libraries.
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Slate> 3 + 4.
7
Slate> 3 + 4 * 5.
35
Slate> (3 + 4) * 5.
35
Slate> 3 + (4 * 5).
23

Binary messages have lower precedence than unary messages. Without any group-
ing notation, the following expression’s unary messages will be evaluated first and
then passed as arguments to the binary message:

Slate> 7 factorial + 3 negated.
5037
Slate> (7 factorial) + (3 negated).
5037
Slate> (7 factorial + 3) negated.
-5043

Binary selectors can consist of one or more of the following characters:

# $ % ^ * - + = ˜ / \ ? < > , ;

However, these characters are reserved:

@ [ ] ( ) { } . : ! | ‘ &

2.2.3 Keyword Message-sends

A KEYWORD MESSAGE is an alternating sequence of keywords and expressions,
generally being a continued infix form. Keywords are identifiers beginning with
a letter and ending with a colon. Keyword messages start with the left-most ar-
gument along with the longest possible sequence of keyword-value pairs. The
SELECTOR of the message is the joining-together of all the keywords into one sym-
bol, which is the name of the message. For example,

Slate> 5 min: 4 max: 7.
7

is a keyword message-send named min:max: which has 3 arguments: 5, 4, and
7. However,

Slate> 5 min: (4 max: 7).
5
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is a different kind of expression. Two keyword message-sends are made, the first
being max: sent to 4 and 7, and min: sent to 5 and the first result. Note however,
that even though the first expression evaluates to the same value as:

Slate> (5 min: 4) max: 7.
7

that this is still a distinct expression from the first one, with two message-sends of
one keyword each instead of one send with two keywords. Actually, this expresses
the definition of min:max:, although this is perhaps one of the most trivial uses
of method names with multiple keywords.
Keywords have the lowest precedence of message-sends, so arguments may be the
results of unary or binary sends without explicit grouping required. For example,
the first expression here is equivalent to the latter implicitly:

Slate> 5 + 4 min: 7 factorial max: 8.
9
Slate> (5 + 4) min: (7 factorial) max: 8.
9

2.2.4 Expression Sequences

Statements are the overall expressions between stop-marks, which are periods.
In an interactive evaluation context, expressions aren’t evaluated until a full (top-
level) statement is expressed. The stop mark also means that statement’s ex-
pression results aren’t directly carried forward as an argument to the following
expression; side-effects must be used to use the results. More specifically, each
expression in the sequence must be evaluated in order, and one expression’s side-
effects must effectively occur before the next expression begins executing and be-
fore any of its side-effects occur.

Slate provides for a bare expression sequence syntax that can be embedded within
any grouping parentheses, as follows:

Slate> 3 + 4.
7
Slate> (7 factorial. 5
negated) min: 6.
-5

The parentheses are used just as normal grouping, and notably, the 5 negated
expression wraps over a line, but still evaluates that way. (We do not consider
this expression good style, but it illustrates the nature of the language.) If the
parentheses are empty, or the last statement in a sequence is followed by a period
before ending the sequence, an “empty expression” value is returned, which is
Nil by convention.
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2.2.5 Implicit-context Sends

Within methods, blocks, and even at the top-level, some expressions may take the
surrounding context as the first argument. There is an order for the determination
of which object becomes the first argument, which is entirely based on lexical
scoping. So, within a block, an implicit send will take the block’s run-time context
as argument. The next outer contexts follow in sequence, up to the top-level and
what it inherits from, which generally turns out to be the global object that roots
the current session.
Specifically, any non-literal expression following a statement-separator or starting
an expression within parentheses or other grouping is an implicit-context send.
There are some very common uses of implicit-context sends. In particular, access-
ing and modifying local variables of a block or method is accomplished entirely this
way, as well as returns. For example,

[| :i j k |
j: i factorial.
k: (j raisedTo: 4).
j < k ifTrue: [| m |

j: j - i. m: j. ^ (m raisedTo: 3)].
k: k - 4.
k
].

is a block which, when invoked, takes one argument and has another two to
manipulate. Notice that the local slot j is available within the enclosed block
that also has a further slot m. Local blocks may also override the slots of their
outer contexts with their input and local slots. In this case, the identifiers j
and j:, for example, are automatically-generated accessing and update methods
on the context. Because j: is a keyword message, if the assigned value is a
keyword message-send result, it must be enclosed in parentheses to distinguish
the keyword pattern. The ^ (m raisedTo: 3) message causes the context to
exit prematurely, returning as its value the result of the right-hand argument. All
methods have this method defined on them, and it will return out to the nearest
named block or to the top-level.

In some cases, it may be necessary to manipulate the context in particular ways.
In that case, it can be directly addressed with a loopback slot named thisContext,
which refers to the current activation. The essence of this concept is that within
a block, x: 4. is equivalent to thisContext x: 4.2

2The current named method as distinct from the context is available as currentMethod, and its
name is available as selector. However, these are dependent on the current implementation of Slate,
and so may not be available in the future.
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2.3 Methods

METHODS in Slate are basically annotated code blocks (documented in 2.1.1),
coupled with annotations of the objects’ roles that dispatch to them.

2.3.1 Method Definitions

Method definition syntax is handled relatively separately from normal precedence
and grammar. It essentially revolves around the use of the reserved character
“@”. If any identifier in a message-send argument position is found to contain
the character, the rest of the same send is examined for other instances of the
symbol, and the whole send-expression is treated as a template. The parser treats
the expression or identifier to the right of the @ characters as dispatch targets for
the method’s argument positions; the actual objects returned by the expressions
are annotated with a role for their positions.
After the message-send template, there is expected a block expression of some
kind, whether a literal or an existing block. Whichever is specified, the parser
creates a new block out of it with adjustments so that the identifiers in the dis-
patching message-send become input slots in the closure. The block should be
the final expression encountered before the next stop (a period).
There is a further allowance that an input slot-name specifier may be solely an
underscore (but not an underscore followed by anything else), in which case the
argument to the method at that position is not passed in to the block closure.
This syntax is much simpler to recognize and create than to explain. For exam-
ple, the following are a series of message definitions adding to boolean control of
evaluation:

_@True ifTrue: block ifFalse: _ [block do].
_@False ifTrue: _ ifFalse: block [block do].

bool@(Boolean traits) ifTrue: block
"Some sugaring for ifTrue:ifFalse:."
[
bool ifTrue: block ifFalse: []
].

The first two represent good uses of dispatching on a particular individual object
(dispatching the ignored symbol “_” to True and False, respectively) as well as the
syntax for disregarding its value. Within their blocks, block refers to the named
argument to the method. What’s hidden is that the block given as the code is
re-written to include those arguments as inputs in the header. The latter method
appears to have a slightly-different syntax, but this is an illusion: the parentheses
are just surrounding a Slate expression which evaluates to an object, much as
True and False evaluate to particular objects; really, any Slate expression can
be placed there, assuming that the result of it is what is wanted for dispatch. As
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a side note, this last method is defined in terms of the first two and is shared,
since True and False both delegate to Boolean traits (the object carrying the
common behavior of the boolean objects).

2.3.2 Expression-based Definitions

The specialized syntax using the “@” special has an equivalent in regular Slate
syntax which is often useful for generating new methods dynamically in a non-
ambiguous way. This is a reflective call on the interpreter to compile a method
using a certain symbolic name and a sequence of objects that are used for dis-
patching targets. For example:

[| :x :y | 5] asMethod: #+ on: {2. 2}.

and

_@2 + _@2 [5].

are equivalent (while not recommendable) expressions. This raises the question of
a place-filler for an argument position which is not dispatched. In that case, Slate
provides a unique primitive NoRole for this purpose, which provides an analogous
role to Nil: NoRole cannot be dispatched upon. Essentially, this means that the
following method definition:

c@(Set traits) keyAt: index
[
c array at: index

].

is semantically equivalent to:

c@(Set traits) keyAt: index@NoRole
[
c array at: index

].

and furthermore to:

[| :c :index | c array at: index] asMethod: #keyAt:
on: {Set traits. NoRole}.

2.3.3 Lookup Semantics

Message dispatch in Slate is achieved by consulting all of the arguments to that
message, and considering what roles they have pertaining to that message name
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and their position within the message-send. Slate’s dispatch semantics are termed
“multiple dispatch” to distinguish from “single dispatch” which is typical of most
languages based on objects and messages. Whereas most languages designate on
object as the receiver of a message, Slate considers all objects involved cooper-
ating participants. During the dispatch process, more than one method can be
discovered as a potential candidate. The most specific candidate is chosen as soon
as its place in the order is determined.
The algorithm achieves a full ordering of arguments: the specificity of the first
argument counts more than the second, the second more than the third, and so
on. However, where normal multiple dispatch uses the most specific supertype to
determine specificity (or rather, the most specific parameter type of which the ar-
gument is a subtype), specificity is instead interpreted as DISTANCE in the directed
graph of delegations, starting from the argument as the root.

The DISTANCE notion has the following properties:

• It is determined by a depth-first traversal over the delegate slots, considering
most-recently-added delegates before previously-added ones.

• Delegations that lead to cycles are not traversed.

• Repeated finds of a same method do not alter the distance value for it; the
first one found is retained.

• The closer (smaller) the DISTANCE of the role to the argument, the more spe-
cific it is.

The resulting dispatched method satisfies the property that: for any of the argu-
ments, we can find the method on some role reachable by traversing delegations,
and that is the closest such method we can find (where former arguments count
as being “closer” than any subsequent arguments), where NoRole behaves like an
“omega distance”, as far away as possible.

2.3.4 Optional Keyword Arguments

The mechanism in Slate for specifying optional input arguments uses optional
keywords for a syntax. They can be added to a method definition, a message-
send, or a block header equally. Also, optional keywords can apply to unary,
binary, and keyword message syntaxes equally. However, optional arguments
cannot affect dispatch, and when not provided will start with a Nil value.

Method definitions may be annotated with optionals that they support by extend-
ing the signature with keyword-localname pairs as “&keywordName: argName”.
This compiles the method to support argName as a local, with optional input.
An optional keyword argument is passed to a method by forming keyword-value
pairs as “&keywordName: someValue”. Following keywords that have the &-prefix
will be collected into the same message-send. A following non-optional keyword
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will be treated as beginning a new surrounding message-send, but in general, op-
tional keywords raise the precedence of the basis message signature to a keyword
level, instead of just unary or binary.

A block can declare optional input keywords in its block header, using “&argName”
as an input variable declaration, called with the normal convention, whenever the
block is invoked with a message-send.

2.3.5 Resending messages or Dispatch-overriding

Because Slate’s methods are not centered around any particular argument, the
resending of messages is formulated in terms of giving the method activation itself
a message. The following are the various primitive protocols involved in resends:

resend is the simplest form of resending. It acts on the context to find the next-
most-applicable method and invokes it with the exact same set of arguments.
The result of the resend message is the returned result of that method.

methodName findOn: argumentArray locates the method for the given symbol
name and group of argument objects.

methodName findOn: argumentArray after: aMethod locates the method fol-
lowing the given one with the same type of arguments as above.

methodName sendTo: argumentArray is an explicit application of a method, use-
ful when the symbol name of the method needs to be provided at run-time.

sendWith:, sendWith:with: and sendWith:with:with: take one, two, and
three arguments respectively as above without creating an array to pass the
arguments in.

methodName sendTo: argumentArray through: dispatchArray is an extra op-
tion to specify a different signature for the method than that of the actual
argument objects.

Also, both sendTo: and sendTo:through: accept an &optionals: optional key-
word which is passed an Array of the alternating keyword symbols (not the names
of the locals: those are defined per method) and values to use.

2.3.6 Subjective Dispatch

The multiple dispatch system has an extended dynamic signature form which can
be used to give a “subjective” or “layered” customization of the Slate environment.
This is an implementation and slight modification of the Us language features
conceived of by the Self authors[Smith 96].
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Basic mechanisms

1. Slate dispatch signatures are “enlarged” to support two implicit endpoints:
one before the first argument and one after. We refer to the first role as an
“adviser” or Layer, and to the second as a Subject or “interleaver”. The
layer role, being “to the left” of the explicit argument positions, has higher
precedence than any of them; the subject role has a correspondingly opposite
role: it has the lowest precedence of all.

2. Two primitive context-handling methods were added to support invoking
code with a different object used for one of these new roles. What happens
is that you execute a block [] seenFrom: someSubject in order to make
all methods defined within dispatched with that object as the subject, and
all methods looked up in that context (or any other context “seen from” that
object) used with that subject in the dispatch.

The effect of combining these two mechanisms is that there is a means for the
user to dynamically (and transparently) extend existing libraries. The Layer usage
has a more “absolute” power to override, since without dispatching on any other
arguments, a method defined in a layer will match a message before any other can.
The Subject usage has a more fine-tuned (or weaker, in another sense) ability to
override, since without any other dispatching, a method defined with a certain
subject will never be called. However, taking an existing method’s signature and
defining a customized version with a subject will allow customizing that specific
method without affecting any other method with that selector.

Important features

• Methods defined with a special subject or layer persist with those objects,
since they are just dispatch participants.

• Resending messages works just the same within subjective methods as in
normal methods; the same dispatch mechanism is in effect, so the ability to
combine or extend functionality is available.

• Nesting subjective scopes has a dynamic scoping effect: the actions taken
within have run-time scope instead of corresponding exactly to how code is
lexically defined. This gives the compositional effect that should be apparent
when viewing nested subjective scopes.

• Methods defined in non-subjective contexts have no subject or layer rather
than any “default” subject: they are for most purposes, “objective”.

The core elements

Subject the type of object which provides an appropriate handle for subjective
interleaving behavior in dynamically overriding or extending other methods’
behaviors.
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Layer the type of object which provides an appropriate handle for subjective lay-
ering behavior in dynamically overriding or extending other methods’ behav-
iors.

[] seenFrom: aSubject executes the contents of the block with the given Subject
dynamically affecting the execution of the expressions.

aLayer layering: [] executes the contents of the block with the given Layer
dynamically affecting the execution of the expressions.

[] withoutSubject executes the contents of the block without any subject.

[] withoutLayers executes the contents of the block without any layer.

2.4 Type Annotations

Input and local slots’ types can be specified statically for performance or docu-
mentation reasons, if desired. The special character “!” is used in the same man-
ner as the dispatch annotation “@”, but type-annotations can occur anywhere.
The type system and inference system in Slate is part of the standard library, and
so is explained later in 3.11 on page 44.

2.5 Macro Message-sends

In order to manipulate syntax trees or provide annotations on source code, Slate
provides another form of message-send called a macro-level message send. Sends
of this sort have as their arguments the objects built for the expressions’ shapes.
Furthermore, the results of evaluation of macro-sends are placed in the syntax
tree in the same location as the macro-send occupied.
Preceding any selector with a back-tick (‘) will cause it to be sent as a macro. This
means that the message sent will be dispatched on Slate’s Syntax Node objects,
which are produced by the parser and consumed by the compiler. Macros fit into
the process of compiling in this order: the text is processed by the Lexer into a
stream of tokens, which are consumed by the Parser to produce a (tree-)stream of
Syntax Nodes. Before being passed to the compiler, the macroexpand method is
recursively called on these syntax trees, which invokes every macro-level message-
send and performs the mechanics of replacing the macro-send with the result of
the method invoked. With this in mind, the Slate macro system is offered as a
flexible communication system between the code-writer and the compiler or other
tools or even other users, using parse trees as the medium.
As an example of the expressiveness of this system, we can express the type
annotation and comment features of the Slate language in terms of macros:

• Type-annotation via “expression!type” could be replaced by “someExpression
‘type: assertedTypeExpression” where the ‘type: macro simply sets
the type slot for the expression object.
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• Comments could be applied specifically to particular expressions. For ex-
ample, following a syntax element with a comment could be implemented by
“theExpression ‘comment: commentString”, wrapping the syntax node
with a comment annotation.

• Compile-time evaluation of any expression can be accomplished by calling
‘evaluate on it. This also subsumes the #-prefix for array literals and ex-
pression sequences which accomplishes that for those syntax forms.

2.5.1 Defining new Macro-methods

Macros must be dispatched (if at all) upon the traits of expressions’ syntactic rep-
resentation. This introduces a few difficulties, in that some familiarity is needed
with the parse node types in order to name them. However, only two things need
to be remembered:

1. The generic syntax node type is Syntax Node traits, and this is usually
all that is necessary for basic macro-methods.

2. Syntax node types of various objects and specific expression types can be had
by simply quoting them and asking for their traits, although this might be too
specific in some cases. For example, 4 ‘quote traits is suitable for dis-
patching on Integers, but not Numbers in general, or (3 + 4) ‘quote traits
will help dispatch on binary message-sends, but not all message-sends.
Luckily, [] ‘quote traits works for blocks as well as methods.

2.5.2 Quoting and Unquoting

A fundamental application of the macro message-send system is the ability to
obtain syntax trees for any expression at run-time. The most basic methods for
this are ‘quote, which causes the surrounding expression to use its quoted value
as the input for even normal methods, and ‘unquote results in an inversion
of the action of ‘quote, so it can only be provided within quoted expressions.
Lisp macro system users will note that this effectively makes ‘quote the same as
quasi-quotation.
3

Labelled Quotation In experience with Lisp macros, nested quotation is often
found necessary. In order to adequately control this, often the quotation prefix
symbols have to be combined in non-intuitive ways to produce the correct code.
Slate includes, as an alternative, two operations which set a label on a quotation
and can unquote within that to the original quotation by means of referencing the
label.

3We may also provide these as ‘up and ‘down, respectively, if there is enough demand for it, and it
is not too confusing.

19



Most users need time to develop the understanding of the need for higher-order
macros, and this relates to users who employ them. For reference, a Lisp book
which covers the subject of higher-order macros better than any other is On
Lisp[Graham 94]. However, it’s also been said that Lisp’s notation and the con-
ceptual overhead required to manage the notation in higher-order macros keeps
programmers from entering the field, so perhaps this new notation will help.
The operators are expr1 ‘quote: aLiteral and expr2 ‘unquote: aLiteral,
and in order for this to work syntactically, the labels must be equal in value and
must be literals. As well, the unquoting expression has to be a sub-expression
of the quotation. The effect is that nesting an expression more deeply does not
require altering the quotation operators to compensate, and it does indicate better
what the unquoting is intended to do.

2.5.3 Expression Substitution (Not Yet Implemented)

‘with:as: is a proposed protocol for transparent substitution of temporary or
locally-provided proxies for environment values and other system elements. This
should provide an effective correspondent of the functionality of Lisp’s "with-"
style macros.

2.5.4 Source Pattern-matching (Not Yet Implemented)

A future framework for expansion will involve accommodating the types of source-
level pattern-matching used in tools for manipulating code for development, as in
the Smalltalk Refactoring Browser.

2.6 Literal Syntax

2.6.1 Characters

Slate’s default support for character literals uses the $ symbol as a prefix. For
example, $a, $3, $>, and $$ are all Character object literals for a, 3, >, and $,
respectively. Printable and non-printable characters require backslash escapes
as shown and listed in Table 1 on the next page.

2.6.2 Strings

Strings are comprised of any sequence of characters surrounded by single-quote
characters. Strings can include the commenting character (double-quotes) with-
out an escape. Embedded single-quotes can be provided by using the backslash
character to escape them (\’). Slate’s character literal syntax also embeds into
string literals, omitting the $ prefix. All characters that require escapes in char-
acter literal syntax also require escapes when used within string literals, with the
exception of double-quote marks and the addition of single-quote marks.
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Character name Literal
Escape $\e
Newline $\n

Carriage Return $\r
Tab $\t

Backspace $\b
Null $\0
Bell $\a

Form Feed $\f
Vertical Feed $\v

Space $\s
Backslash $\\

Table 1: Character Literal Escapes

The following are all illustrative examples of Strings in Slate:

’a string comprises any sequence of characters, surrounded by single quotes’
’strings can include the "comment delimiting" character’
’and strings can include embedded single quote characters by escaping\’ them’
’strings can contain embedded
newline characters’
’and escaped \ncharacters’
’’ "and don’t forget the empty string"

2.6.3 Symbols

Symbols start with the pound sign character (#) and consist of all following char-
acters up to the next non-escaped whitespace, unless the pound sign is followed
exactly by a string literal, in which case the string’s contents become the identifier
for the symbol. So, for example, the following are all valid symbols and symbol
literals:

#$
#key:word:expression:
#something_with_underscores
#’A full string with a \nnewline in it.’
#’@’ "@ and other reserved characters must be escaped to deal with their lexical characteristics."

A property of Symbols and their literals is that any literal with the same value
as another also refers to the same instance as any other symbol literal with that
value in a Slate system. This allows fast hashes and comparisons by identity
rather than value hashes. In particular, as with Slate identifiers, a Symbol’s value
is case-sensitive, so #a and #A are distinct.
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Internally, Slate currently keeps one global table for symbols, and uses individual
context objects to hold local bindings.4

2.6.4 Arrays

Arrays can be literally and recursively specified by curly-brace notation using
stops as separators. Array indices in Slate are 0-based. So:

{4. 5. {foo. bar}}.

returns an array with 4 in position 0, 5 at 1, and an array with objects foo and
bar inserted into it at position 2.
Immediate array syntax - #{4. 5. {foo. bar}} - is provided as an alternative
to create the array when the method is compiled, instead of creating a new array
on each method invocation. The syntax is identical except that the first opening
brace is preceded by the pound sign. The disadvantage is that no run-time values
will be usable.
A special “literal array” syntax is also provided, in the manner of Smalltalk-80, in
which all tokens within are treated symbolically, evaluating to an array of literals
as read (but not evaluated) by Slate. Naturally, these are all evaluated when the
surrounding context is compiled. For example:

Slate> #(1 2 3).
{1. 2. 3}
Slate> #(3 + 4).
{3. #’+’. 4}
Slate> #(quux: a :bar).
{#quux:. #a. #:bar}
Slate> #(1 . _ 2e3).
{1. #’.’. #_. 2000.0}

2.6.5 Blocks

Block syntax basics were covered in 2.1.1; the precise, full specification includes
more features and outlines some necessary logical rules. Primarily, blocks are
square-bracket-delimited statement sequences with an optional header that spec-
ifies input and local slots (input slots being arguments).
Slot names must be valid unary message selectors (see 2.2.1). Inputs are distin-
guished by a prefix colon character (:), and must occur in the same positional
order that the invocation will use or expect, although they can be interspersed
among other slot declarations at will.
Optional keyword arguments are specified with an ampersand prefix character (&),
and may occur in any order.
For example,

4Future, bootstrapped releases may provide for partitioning of the global table.
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[| x :y &z :w | ]

evaluates to a block which takes inputs y and w in that order, has locals x (and
z), and takes an optional parameter to specify z’s value when called.

3 The Slate World

3.1 Overall Organization

3.1.1 The lobby

The lobby is the root namespace object for the Slate object system; it is the “room”
by which objects enter the Slate world. All “global” objects are really only glob-
ally accessible because the lobby is delegated to by lexical contexts, directly or
indirectly. The lobby in turn may (and often does) delegate to other namespaces
which contain different categorized objects of interest to the applications program-
mer, and this can be altered at run-time.
Every object reference which is not local to a block closure is sent to the enclos-
ing namespace for resolution, which by default is the root namespace, the lobby
(nested closures refer first to their surrounding closure). The lobby contains a
loopback slot referring to itself by that name. To add or arrange globals, either
implicit sends or explicit references to the lobby can be made. (Consider it good
style to directly reference it.)
The lobby is essentially a threading context, and in the future bootstrap will be
instantiable in that sense.

3.1.2 Naming and Paths

The lobby provides access to the major Namespaces, which are objects suitable for
organizing things (for now, they are essentially just Cloneable objects). The most
important one is prototypes, which contains the major kinds of shared behavior
used by the system. Objects there may be cloned and used directly, but they
should not themselves be manipulated without some design effort, since these
are global resources, having a name-path identifier which can be freely shared.
prototypes is inherited by the lobby, so it is not necessary to use the namespace
path to identify, for example, Collection or Boolean. However, without explicitly
mentioning the path, adding slots will use the lobby or the local context by default.
The prototypes namespace further contains inherited namespaces for, by ex-
ample, collections, and can be otherwise enhanced to divide up the system into
manageable pieces.

3.2 Core Behaviors

Slate defines several subtle variations on the core behavior of objects:
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Root The "root" object, upon which all the very basic methods of slot manipulation
are defined.

Oddball The branch of Root representing non-cloneable objects. These include
built-in ’constants’ such as the Booleans, as well as literals (value-objects)
such as Characters and Symbols. Note that Oddball itself defines a clone
method, but that method will only work once, in that you can clone Oddball
but not objects made by cloning Oddball.

Nil Nil is an Oddball representing "no-object".

Derivable Derivable objects respond to derive and deriveWith:, which means
they can be readily extended.

Cloneable Cloneable objects are derivables that can be cloned.

Method A Cloneable object with attributes for supporting execution of blocks
and holding compiled code and its attributes.

3.2.1 Default Object Features

Identity == returns whether the two arguments are identical, i.e. the same object,
and ˜== is its negation. Value-equality (= and its negation ˜=) defaults to this.

Printing print returns a printed representation of the object. printOn: places
the result of printing onto a designated Stream. This should be overridden
for clarity.

Delegation-testing isReally: returns whether the first object has the second
as one of its delegated objects, directly or indirectly.

Kind-testing is: returns whether the first object has the same kind as the sec-
ond object, or some derived kind from the second object’s kind. By default,
is: is isReally:; overrides can allow the user to adapt or abuse this no-
tion where delegation isn’t appropriate but kind-similarity still should hold.
isSameAs: answers whether the arguments have the same traits object.

Hashing A quick way to sort by object value that makes searching collections
faster is the hash method, which by default hashes on the object’s identity
(available separately as identityHash), essentially by its birth address in
memory. What’s more important about hashing is that this is how value-
equality is established for collections; if an object type overrides =, it must
also override the hash method’s algorithm so that a = b⇒ a hash = b hash.

Cloning The clone method is fundamental for Slate objects. It creates and re-
turns a new object identical in slot names and values to the argument object,
but with a new unique identity. As such, it has a very specific meaning and
should only be used that way.
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Copying The copy method makes a value-equal (=) object from the argument and
returns the new object. This should be overridden as necessary where = is
overridden. The default case is to clone the original object.

Conversion/coercion the as: protocol provides default conversion methods be-
tween types of objects in Slate. Some primitive types, such as Number, over-
ride this. The as: method has a default implementation on root objects: if
no converter is found or if the objects are not of the same type, the failure
will raise a condition. Precisely, the behavior of a as: b is to produce an
object based on a which is as much like b as possible.

Slot-enumeration For each object, the Symbols naming its slots and delegate
slots can be accessed and iterated over, using the accessors slotNames and
delegateNames, which work with the symbol names of the slots, or the it-
erators slotsDo: and delegatesDo:, which iterate over the stored values
themselves.

3.2.2 Oddballs

There are various Oddballs in the system, and they are non-cloneable in general.
However, Oddball itself may be cloned, for extension purposes.

3.3 Traits

Slate objects, from the root objects down, all respond to the message traits,
which is conceptually shared behavior but is not as binding as a class is. It
returns an object which is, by convention, the location to place shared behavior.
Most Slate method definitions are defined upon some object’s Traits object. This
is significant because cloning an object with a traits delegation slot will result in a
new object with the same object delegated-to, so all methods defined on that traits
object apply to the new clone.
Traits objects also have their own traits object, which is Traits traits. This has
the important methods defined on it for deriving new prototypes with new traits
objects:

myObject derive will return a new clone of the object with a traits object which
is cloned from the original’s traits object, and an immutable delegation slot
set between the traits objects.

myObject deriveWith: mixinsArray will perform the same operation, adding
more immutable delegation links to the traits of the array’s objects, in the
given order, which achieves a structured, shared behavior of static multiple
delegation. Note that the delegation link addition order makes the right-most
delegation target override the former ones in that order. One interesting
property of this method is that the elements of mixinsArray do not have to
be Derivable.
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obj addPrototype: name derivedFrom: parentsArray will perform the effects
of either derive or deriveWith: using all the elements of the Sequence in
the same order as deriveWith:. It also assigns the name to the traits ob-
ject’s name attribute as well as using the name for the attribute between the
surrounding object and the new prototype. Finally, it will compare the dele-
gation pattern of the new object with the old, and only replace the old if they
differ. In either case, the installed object is what is returned.

As with any method in Slate, these may be overridden to provide additional au-
tomation and safety in line with their semantics.

3.4 Closures, Booleans, and Control Structures

3.4.1 Boolean Logic

Slate’s interpreter primitively provides the objects True and False, which are
clones of Boolean, and delegate to Boolean traits. Logical methods are defined
on these in a very minimalistic way. Table 2 shows the non-lazy logical methods
and their meanings.

Description Selector
AND/Conjunction /\
OR/Disjunction \/
NOT/Negation not

EQV/Equivalence eqv:
XOR/Exclusive-OR xor:

Table 2: Basic Logical Operators

3.4.2 Basic Conditional Evaluation

Logical methods are provided which take a block as their second argument (and:,
or:, xor:, eqv:). By accepting a block as the second argument, they can and do
provide conditional evaluation of the second argument only in the case that the
first does not decide the total result automatically5. Blocks that evaluate logical
expressions can be used lazily in these logical expressions. For example,

(x < 3) and: [y > 7].

only evaluates the right-hand block argument if the first argument turns out to
be True.

5However, support for blocks in the second argument position may be incorporated into the non-lazy
selectors as different methods in the future, making some of these obsolete.
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(x < 3) or: [y > 7].

only evaluates the right-hand block argument if the first argument turns out to
be False.

In general, the basic of booleans to switch between code alternatives is to use
ifTrue:, ifFalse:, and ifTrue:ifFalse: for the various combinations of bi-
nary branches. For example,

x isNegative ifTrue: [x: x negated].

ensures that x is positive by optionally executing code to make it positive if it’s
not. Of course if only the result is desired, instead of just the side-effect, the
entire expression’s result will be the result of the executed block, so that it can be
embedded in further expressions.

Conditional evaluation can also be driven by whether or not a slot has been initial-
ized, or whether a method returns Nil. There are a few options for conditionalizing
on Nil:

expr ifNil: block and expr ifNotNil: block execute their blocks based on
whether the expression evaluates to Nil, and returns the result.

expr ifNil: nilBlock ifNotNil: otherBlock provides both options in one
expression.

expr ifNotNilDo: block applies the block to the expression’s result if it turns
out to be non-Nil, so the block given must accept one argument. ifNil:ifNotNilDo:
is also provided for completeness.

3.4.3 Looping

Slate includes various idioms for constructing basic loops.

n timesRepeat: block executes the block n times.

condition whileTrue: block and condition whileFalse: block execute their
blocks repeatedly, checking the condition before each iteration.

whileTrue and whileFalse execute their blocks repeatedly, checking the return
value before repeating iterations.

a upTo: b do: block and b downTo: a do: block executes the block with each
number in turn from a to b, inclusive.

upTo:by:do: and downTo:by:do: executes the block with each number in turn
in the inclusive range, with the given stepping increment.
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a below: b do: block and b above: a do: block act identically to the pre-
vious method except that they stop just before the last value. This assists in
iterating over array ranges, where the 0-based indexing makes a difference
in range addresses by one, avoiding excessive use of size - 1 calls.

Slate’s looping control structures can easily be extended without concern due to
the fact that the interpreter unrolls properly tail-recursive blocks into low-level
loop code that re-uses the same activation frame. So basically structuring custom
looping code so that it calls itself last within its own body and returns that value
will avoid the need for increasing stack space per iteration.

3.5 Magnitudes and Numbers

3.5.1 Basic Types

Magnitude the abstract protocol for linearly-comparable objects, following <, >,
<=, >=, and =.

Number the abstract type of dimensionless quantities.

Integer integral quantities, generally.

SmallInteger machine-word-limited integer values (minus 1 bit for the immediate-
value flag). Their normal protocol will not produce errors inconsistent with
mathematic behavior of Integers, however: instead of overflows, BigInteger
objects of the appropriate value are returned.

BigInteger larger Integers, implemented as WordArrays.

Fraction An exact representation of a quotient, or rational number.

Float A low-level floating-point numeric representation, being inexact.

Complex A complex number, similar to a pair of real numbers.

3.5.2 Basic Operations

All of the normal arithmetic operations (i.e. +, -, *, /) are supported primitively
between elements of the same type. Type coercion has to be done entirely in
code; no implicit coercions are performed by the virtual machine. However, the
standard library includes methods which perform this coercion. The interpreter
also transparently provides unlimited-size integers, although the bootstrapped
system may not do so implicitly.

The following are the rest of the primitive operations, given with an indication of
their "signatures":

Float raisedTo: Float is simple floating-point exponentiation.
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Integer as: Float extends an integer into a float.

Float as: Integer truncates a float.

Integer bitOr: Integer performs bitwise logical OR.

Integer bitXor: Integer performs bitwise logical XOR.

Integer bitAnd: Integer performs bitwise logical AND.

Integer bitShift: Integer performs bitwise logical right-shift (left-shift if neg-
ative).

Integer bitNot performs bitwise logical NOT.

Integer >> Integer performs logical right-shift.

Integer << Integer performs logical left-shift.

Integer quo: Integer returns a quotient (integer division).

Many more useful methods are defined, such as mod:, reciprocal, min:, max:,
between:and:, lcm:, and gcd:. Slate also works with Fractions when dividing
Integers, keeping them lazily reduced.

3.5.3 Non-core Operations

zero The zero element for the type of number.

isZero Whether the number is the zero element for its type.

isPositive/isNegative Whether its positive or negative.

abs The absolute value of the number.

sign The sign of the number.

negated Returns -x for x.

gcd: Greatest common divisor.

lcm: Least common multiple.

factorial Factorial.

mod:/rem:/quo: Modulo division, remainder, and quotient.

reciprocal Constructs a new fraction reciprocal.

min: The lesser of the arguments. The least in cases of min:min:.

max: The greater of the arguments. The greatest in cases of max:max:.

a between: b and: c Whether a is between b and c.
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truncated/fractionPart answers the greatest integer less than the number,
and the corresponding difference as a fraction (or a float for Float).

reduced Only defined on Fraction, this is the lazily-applied reducer; it will be
invoked automatically for arithmetic operations as necessary, but is useful
when only the reduced form is needed.

3.5.4 Limit Numerics

PositiveInfinity is greater than any other Magnitude.

NegativeInfinity is lesser than any other Magnitude.

LargeUnbounded A Magnitude designed to represent non-infinite, but non-bounded
(“as large as you like”) quantities.

PositiveEpsilon is as small as you like, but positive and greater than zero.

NegativeEpsilon is as small as you like, but negative and lesser than zero.

3.5.5 Dimensioned Units

There is an entire system for handling dimensioned units and their various com-
binations and mathematical operations. There is included support for SI units,
and common English units; furthermore, any object may conceivably be used as
a base unit. See the ’src/dimensioned.slate’ file for an overview.

3.6 Collections

Slate’s collection hierarchy makes use of multiple delegation to provide a collec-
tion system that can be reasoned about with greater certainty, and that can be
extended more easily than other object-oriented languages’ collection types.

Figure 1 shows the overview of the collection types, and how their delegation is
patterned.

All collections support a minimal set of methods, including support for basic in-
ternal iteration and testing. The following are representative core methods, and
are by no means the limit of collection features:

Testing Methods

isEmpty answers whether or not the collection has any elements in it.

includes: answers whether the collection contains the object.
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Figure 1: Core Collections Inheritance

Properties

size answers the number of elements in it. This is often calculated dynamically
for extensible collections, so it’s often useful to cache it in a calling method.

capacity answers the size that the collection’s implementation is currently ready
for.

Making new collections

newSize: answers a new collection of the same type that is sized to the argument.

newSizeOf: answers a new collection of the same type that is sized to same size
that the argument has.

newEmpty answers a new collection of the same type that is sized to some small
default value.

as: via newWithAll: has extensive support in the collection types to produce
copies of the first collection with the type of the second (vice versa for newWithAll:
of course).

Iterating

do: executes a block with :each (the idiomatic input slot for iterating) of the
collection’s elements in turn. It answers the original collection.
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collect: also takes a block, but answers a collection with all the results of those
block-applications put into a new collection of the appropriate type.

select: takes a block that answers a Boolean and answers a new collection of
the elements that the block filters (answers True).

reject: performs the logical opposite of select:, answering elements for which
the block answers False.

inject: init into: accumulator takes a two-argument accumulation block
and applies it across the collection’s elements. The initial value given be-
comes the first argument, and is replaced through the iterations with the
result of the block.

reduce: takes a two-argument block and performs the same action as inject:into:
only using one of the collection’s elements as an initial value.

3.6.1 Extensible Collections

Collections derived from ExtensibleCollection can be modified by adding or
removing elements in various ways. The core protocol is:

add: inserts the given object into the collection.

remove: removes an object equal to the given one from the collection.

addAll: inserts all elements from the first collection contained in the second.

removeAll: removes all elements from the first collection contained in the sec-
ond.

3.6.2 Sequences

Sequences are Mappings from a range of natural numbers to some objects, some-
times restricted to a given type. Slate sequences are all addressed from a base of
0.

at: answers the element at the index given.

at:put: replaces the element at the index given with the object that is the last
argument.

To access and modify sequences, the basic methods seq at: index and
seq at: index put: object are provided.

Arrays Arrays are fixed-length sequences of any kind of object and are sup-
ported primitively. Various parameter types of Array are supported primitively,
such as WordArray, ByteArray, and String.
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Vectors Vectors and Tuples are fixed-length sequences constructed for geo-
metrical purposes. Points happen to be Tuples. The constructor message for
these types is “,”.

Subsequences / Slices Subsequences allow one to treat a segment of a se-
quence as a separate sequence with its own addressing scheme; however, modify-
ing the subsequence will cause the original to be modified.

Cords Cords are a non-copying representation of a concatenation of Sequences.
Normal concatenation of Sequences is performed with the ; method, and results
in copying both of the arguments into a new Sequence of the appropriate type; the
;; method will construct a Cord instead. They efficiently implement accessing via
at: and iteration via do:, and Cord as: Sequence will “flatten” the Cord into a
Sequence.

Extensible and Sorted Sequences An ExtensibleSequence is an extensible
Sequence with some special methods to treat both ends as queues. It provides
the following additional protocol:

addFirst: inserts the given object at the beginning of the sequence.

addLast: inserts the given object at the end of the sequence.

add: inserts the given object at the end of the sequence (it’s addLast:).

first: answers a sequence of the first N elements.

last: answers a sequence of the final N elements.

removeFirst removes the first element from the sequence.

removeLast removes the final element from the sequence.

A SortedSequence behaves similarly except that it will arrange for its members to
remain sorted according to a block closure that compares two individual elements;
as a result, it should not be manipulated except via add: and remove: since it
maintains its own ordering. A Heap is a SortedSequence designed for collecting
elements in arbitrary order, and removing the first elements.

Stacks A Stack is an ExtensibleSequence augmented with methods to honor
the stack abstraction: push:, pop, top, etc.

Ranges A Range is a Sequence of Numbers between two values, that is ordered
consecutively and has some stepping value; they include the start value and also
the end value unless the stepping doesn’t lead to the end value exactly.

33



Buffers A RingBuffer is a special ExtensibleSequence that takes extra care
to only use one underlying array object, and also stores its elements in a “wrap-
around” fashion, to make for an efficient queue for Streams (see BufferReadStream
and BufferWriteStream ( 3.7.2 on page 37)). One consequence of this is that a
RingBuffer has a limited upper bound in size which the client must handle,
although the capacity can be grown explicitly.

3.6.3 Strings and Characters

Strings in Slate are non-extensible, mutable Sequences of Characters (although
ExtensibleSequences can easily be made for them via, say, as:). Strings and
Characters have a special literal syntax, and methods specific to dealing with text;
most of the useful generic methods for strings are lifted to the Sequence type.

3.6.4 Collections without Duplicates

NoDuplicatesCollection forms a special protocol that allows for extension in a
well-mannered way. Instead of an add: protocol for extension, these collections
provide include:, which ensures that at least one element of the collection is the
target object, but doesn’t do anything otherwise. Using include: will never add
an object if it is already present. These collection types still respond to add: and
its variants, but they will behave in terms of the include: semantics.

The default implementation of this protocol is Set, which stores its elements in a
(somewhat sparse) hashed array.

3.6.5 Mappings and Dictionaries

Mappings provide a general protocol for associating the elements of a set of keys
each to a value object. A Dictionary is essentially a Set of these Associations,
but they are generally used with symbols as keys.

Mapping defines the general protocol at: and at:put: that Sequences use,
which also happen to be Mappings. Mappings also support iteration protocols
such as keysDo:, valuesDo:, and keysAndValuesDo:.

3.6.6 Linked Collections

A LinkedCollection provides a type of collection where the elements themselves
are central to defining what is in the collection and what is not.

Linked Lists The usual LinkedList type, comprised of individual Links with
forward and backward directional access, is provided as a flexible but basic data
structure.
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Trees Slate includes libraries for binary trees, red-black trees, trees with ordered
elements, and tries.

Graphs A directed graph, or Digraph (directed graph) type, is provided with as-
sociated Node and Edge types. A KeyedDigraph provides the same behavior with
a keyed access, similar to that in a Mapping, although there is an allowance
for various kinds of non-determinism, which makes this useful for creating Non-
deterministic Finite Automata.

3.6.7 Vectors and Matrices

Slate includes the beginnings of a mathematical vector and matrix library. See
the ’src/matrix.slate’ file for an overview.

3.7 Streams and Iterators

Streams are objects that act as a sequential channel of elements from (or even to)
some source.

3.7.1 Basic Protocol

Streams respond to a number of common messages. However, many of these only
work on some of the stream types, usually according to good sense:

next reads and answers the next element in the stream. This causes the stream
reader to advance one element.

peek reads and answers the next element in the stream. This does not advance
the stream reader.

next: draws the next n number of elements from the stream and delivers them
in a Sequence of the appropriate type.

next:putInto: reads the next N elements into the given Sequence starting from
index 0.

next:putInto:startingAt: reads the N elements into the given Sequence start-
ing from the given index.

nextPutInto: reads into the given Sequence the number of elements which will
fit into it.

nextPut: writes the object to the stream.

nextPutAll: alias stream ; sequence writes all the objects in the Sequence to
the stream. The ; selector allows the user to cascade several sequences into
the stream as though they were concatenated.
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do: applies a Block to each element of the stream.

flush synchronizes the total state of the stream with any pending requests made
by the user.

isAtEnd answers whether or not the stream has reached some limit.

upToEnd collects all the elements of the stream up to its limit into an Extensible-
Sequence.

contents answers a collection of the output of the argument WriteStream.

3.7.2 Basic Stream Variants

Figure 2 shows the major stream types and their relationships.

External−

Socket
Pipe

Console

Positionable−Stream

Write−Read−

ReadWrite−

Buffer−

Echo−

File−
Filter−

Collect−
Dummy−
Block−

(Iterators)

LineNumbered−

Figure 2: Stream Inheritance

Stream provides the basic protocol for instantiating streams.

ReadStream provides the basic protocol for input access from a source.

WriteStream provides the basic protocol for output access to a target.

ReadWriteStream provides the basic protocol for both read and write access, and
caches its input as necessary.

PositionableStream extends Stream to provide a basic protocol to iterate over
a sequence of elements from a Sequence or a file or other source. These
streams store their position in the sequence as they iterate, and are re-
positionable. It also has its own variants, -Read-, -Write-, and -ReadWrite-.

DummyStream is a (singleton) ReadWriteStream that just answers Nil repeatedly
(and does nothing on writing). It is best created by applying the reader,
writer, or iterator methods to Nil.

EchoStream is a wrapper for a Stream which copies all stream input/output in-
teractions to another Stream for logging purposes. It is best created by ap-
plying the echo (goes to the Console) or echoTo: anotherStream methods
to any stream. It answers the original stream, so that further processing can
be chained.
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Method ReadStream is a ReadStream that targets a no-input block and returns
its output each time. It is best created by applying the reader or iterator
method to any block.

Method WriteStream is a WriteStream that targets a single-input block and ap-
plies its input each time. It is best created by applying the writer method
to any block.

StreamProcessor is an abstract kind of ReadStream that has a source ReadStream
which it processes in some way. Derivatives specialize it in various useful
ways.

FilterStream is a StreamProcessor that returns the elements of a wrapped
ReadStream that satisfy the logical test of a single-argument block being
applied to each element. It is created by applying the select: or reject:
method to any Stream.

CollectStream is a StreamProcessor that returns the results of applying a
single-argument block to each element of a ReadStream that it wraps. It
is created by applying the collect: method to any Stream.

BufferReadStream wraps another stream with a special Buffer object for read-
ing large chunks from the stream at a time while handing out the elements as
requested. This also minimizes stress on the memory-allocator by avoiding
unnecessary allocation of arrays. It is created by applying the readBuffered
method to any Stream.

BufferWriteStream wraps another stream with a special Buffer object for writ-
ing large chunks to the stream at a time while accepting new elements as re-
quested. This also minimizes stress on the memory-allocator by avoiding un-
necessary allocation of arrays. It is created by applying the writeBuffered
method to any Stream.

3.7.3 Basic Instantiation

There are a number of ways to create Streams, and a large number of implemen-
tations, so some methods exist to simplify the process of making a new one:

newOn: creates a new Stream of the same type as the first argument, targetting
it to the second as a source. This should not be overridden. Instead, the
re-targetting method on: is overridden.

newTo: creates a new WriteStream of the appropriate type on the specified tar-
get. This should be overridden for derived types, and the first argument
should apply to the generic Stream type to allow any instance to know this
protocol.
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newFrom: creates a new ReadStream of the appropriate type on the specified tar-
get. This should be overridden for derived types, and the first argument
should apply to the generic Stream type to allow any instance to know this
protocol.

buffered creates and returns a new BufferStream whose type corresponds to
the argument and wraps the argument Stream.

readBuffered creates and returns a new ReadBufferStream which wraps the
argument Stream.

writeBuffered creates and returns a new WriteBufferStream which wraps the
argument Stream.

echoTo: creates and returns a new EchoStream which wraps the first argument
Stream and echoes to the second.

echo creates and returns a new EchoStream to the Console.

>> performs a looping iterative transfer of all elements of the first stream to the
second. The second argument may be any WriteStream, or a StreamProcessor,
or a single-argument Method in which case it has the same semantics as
collect:. For targets to ExternalResources, it will perform a buffered
transfer. This method always returns the target stream so that the results
may be further processed.

3.7.4 Collecting Protocols

Mirroring the collection protocols, streams support a mirror of that interface (do:,
select:, collect:, reject:). The difference is that where collections would
answer other collections, streams return corresponding streams.

3.7.5 Iterator Streams

Many types (typically collections) define their own Stream type which goes over
its elements in series, even if the collection is not ordered, and only visits each
element once. This type’s prototype is accessed via the slot ReadStream within
each collection (located on its traits object). So “Set ReadStream” refers to the
prototype suitable for iterating over Sets.
In order to create a new iterator for a specific collection, the iterator message is
provided, which clones the prototype for that collection’s type and targets it to the
receiver of the message. The protocol summary:

iterator will return a ReadStream or preferably a ReadWriteStream if one is
available for the type.

reader and writer get streams with only ReadStream and WriteStream capa-
bilities for the type, when available.
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The stream capabilities supported for each basic collection type are usually lim-
ited by the behavior that the type supports. The capabilities per basic type are as
follows; types not mentioned inherit or specialize the capabilities of their ances-
tors:

Type Capabilities
Collection none

ExtensibleCollection Write
Bag Read and Write separately

Sequence Positionables (R, W, RW); copy for extension
ExtensibleSequence Positionables (R, W, RW)

3.8 External Resources

Slate includes an extensible framework for streams that deal with external re-
sources, such as files or network connections or other programs. This generally
relies on having a representative object in the image which tracks the underly-
ing primitive identity of the resource, and also provides methods for iterator-style
streams over what is available through the resources. Many of these resources
aren’t sequences as files are sequences of bytes, so they’re asynchronous and
behave differently from ordinary streams.

Basic Types

ExternalResource provides the basic behavior for external resource types.

ExternalResource Locator provides a core attribute type for structured de-
scriptors of external resources, as a generalization of file pathnames, port
descriptions, URLs, or even URIs.

Primitives Extending the framework to cover new primitive or otherwise connec-
tion types is fairly simple, since the following methods are the only input/output
primitives needed for defining an external resource type:

resource read: n from: handle startingAt: start into: array reads the
next n elements from the resource identified by the given low-level handle,
from the given starting point. The contents are placed in the given array,
which should be a ByteArray currently.

resource write: n to: handle startingAt: start from: array writes the
next n elements to the resource identified by the given low-level handle, from
the given starting point. The contents are read from the given array, which
should be a ByteArray currently.
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Standard behavior

open Opens the resource for usage within the system.

close Closes the resource, releasing related administrative data; this happens
automatically during garbage collection, but it is poor practice to rely upon
this.

enable Creates the external resource represented (used by open).

isOpen answers whether the resource is open or closed.

isActive answers whether the resource is active.

restart restarts the resource if it’s already active.

flush flushes any unwritten elements.

commit commits all pending write-out information to the resource. Commit per-
forms a flush but also ensures that the data is actually sent to the peer.

read:startingAt:into: calls read:from:startingAt:into: with the resource’s
handle.

write:startingAt:from: calls write:to:startingAt:from: with the resource’s
handle.

interactor returns a ReadWriteStream for accessing the resource. Unlike the
stream that iterator returns, interactor is expected to return a coupled
pair of a ReadStream and WriteStream over the same resource, synchro-
nized to preserve the resource’s behavior.

bufferSize answers a sensible buffer size for interaction, possibly dynamically
determined.

defaultBufferSize answers a default sensible buffer size for interaction.

locator answers a suitable structured object for dealing with that resource’s
identity/location.

sessionDo: executes a code block with the resource as its argument, opening
and closing the resource transparently to the block, even for abnormal ter-
minations.

3.8.1 Consoles

The Slate interpreter provides two console Streams primitively, ConsoleInput
and ConsoleOutput, which are Read- and WriteStreams by default, capturing
keyboard input and writing out to the console, respectively. These are also acces-
sible as Console reader and Console writer. Console interactor delegates
to these, acting as a ReadWriteStream.
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3.8.2 Files

Files are persistent external sequences of bytes. The interpreter provides an object
type File which provides the corresponding protocol extensions to ExternalResource:

newNamed:&mode: returns a new File with the given name as its locator and also
a mode option. No attempt to open the file is automatically made.

open: returns a file handle for a String that names a path to a file, for read/write
access.

openForInput: returns a handle for reading an existing file of the given name,
or Nil if it doesn’t exist.

openForOutput: returns a handle for writing (appending) to a file with the given
name.

openNew: returns a handle for writing (appending) to a new file with the given
name. It will create a new file, but if the file exists, Nil will be returned.

withOpenNamed:Do:&mode: wraps sessionDo: with the ability to create a new
File dynamically for the session along with a specified mode.

position returns the position within the file in byte units.

position: sets the position within the file to the given integer number of bytes.

size returns the file size in bytes.

name returns the file’s pathname.

fullName will always return a complete pathname whereas the regular method
may not.

renameTo: adjusts the file to have the given name.

atEnd answers whether the file’s end has been reached.

create makes a file with the given name, with empty contents.

exists answers whether there is a file with the object’s pathname.

delete deletes the file.

Perhaps the most important utility is to load libraries based on path names. load:
’filename’ will execute a file with the given path name as Slate source.

File mode objects specify the interaction capabilities requested of the under-
lying system for the handle. The modes consist of File Read, File Write,
File ReadWrite, and File CreateWrite.
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3.8.3 Shells and Pipes (Not Currently Implemented)

The Shell and Environment globals are provided to access the underlying op-
erating system’s command shell functionality from within the Slate environment.
Shell provides a dispatch hook for shell-related methods, while Environment
acts as a Dictionary of the current shell context’s defined variables and values.
They support several primitive methods as follows:

Shell enter enters the host operating system’s command-line shell. This has no
effect on the Slate environment directly except for suspending and resuming
it.

Shell runProgram: programName withArgs: argsArray executes the program
with the given name and passes it the arguments which must be Strings.

Shell execute: scriptFilename passes the contents of the file named along
to the shell, returning its output.

Environment at: varName returns the value stored in a given environment vari-
able.

Environment at: varName put: newValue stores the new value into the given
environment variable named.

Environment keys returns an Array of the environment variable names defined
in the context that Slate was executed in. This result is independent of the
actual environment variables.

Environment values returns an Array of the environment variable values in
the context that Slate was executed in, in the same order as the keys are
returned. This result is independent of the actual environment variables.

3.8.4 Networking (Not Currently Implemented)

SocketClient and SocketServer are ExternalResources that provide a con-
nection on an operating system port. The behaviors specific to these two types are
as follows:

newOnPort: creates a new socket of the appropriate type to listen/request on the
port number.

shutdown shuts down the socket, called when closing (automatically).

wait waits indefinitely for a connection on the SocketServer.

wait: waits a specific given amount of time in seconds for a connection on the
SocketServer. An Error is raised if this does not happen. A timeout of zero
will cause polling.

host answers the hostname of the socket.
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port answers the port number of the socket.

peerHost answers the hostname of the peer.

peerPort answers the peer’s port number.

peerIP answers the Internet Protocol address string of the peer, if any.

status answers a symbol representing the socket’s current status.

3.9 Exceptional Situations and Errors

Slate has a special kind of object representing when an exceptional situation has
been reached in a program, called a Condition. Condition objects may have
attributes and methods like other ordinary objects, but have special methods for
dealing with exceptional situations and recovering from them in various ways,
often automatically.

3.9.1 Types

Condition An object representing a situation which must be handled. This also
provides a hook for working with the control-flow of the situation, and dy-
namic unwinding of control.

Restart An object representing and controlling how a condition is handled. Be-
cause they are a kind of Condition, they can themselves be handled dynam-
ically.

Warning A Condition which should generate notifications, but does not need to
be raised for handling, i.e. no action needs to be taken. Raised by warn:
with a description.

StyleWarning A Warning that certain conventions set up by the library author
have not been followed, which could lead to problems. Raised by note: with
a description.

BreakPoint A Condition that pauses the current computation. Raised by break
in a context.

Abort A Restart which unwinds the stack and cleans up contexts after a condi-
tion is raised. This is raised by the context method abort.

SeriousCondition A Condition that requires handling, but is not a semantic
error of the program. Rather, it’s due to some incidental or pragmatic con-
sideration.

Error A SeriousCondition which involves some misstep in program logic, and
raises the need for handlers to avoid a program crash. Raised by error:
with a description.
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3.9.2 Protocol

signal Raises the exception that is the argument. This will immediately query
for exception handlers in the current context, performing dynamic automatic
recovery if possible, or starting the debugger if not.

on:do: Executes the block of code with a dynamically bound handler block for
the given type of condition.

ensure: This is a block method that ensures that the second block is executed
either after the first or in any case if the original is aborted or control is
otherwise handed elsewhere in the middle of execution.

handlingCases: Executes the block of code with a set of dynamically bound han-
dler blocks, give as an Array of Associations between Condition objects
and the handlers.

return/return: Returns from the condition, or returns from it with a value, to
the point where the condition was signalled.

exit/exit: Aborts from the condition, or aborts from it with a value, to the point
where the handler was set up.

defaultHandler This is the condition method that is called if no other handlers
are found for the context.

3.10 Concurrency (Not Yet Implemented)

3.10.1 Processes

3.10.2 Scheduling

3.10.3 Synchronization

3.11 Types

In coordination with the reserved syntax for type-annotation in block headers,
Slate’s standard libraries include a collection of representations of primitive TYPES

as well as quantifications over those types. The library of types is laid out within
the non-delegated namespace Types in the lobby.

3.11.1 Types

Any The type that any object satisfies: the universal type.

None The type that no object satisfies: the empty type.
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Range A parametrized type over another type with a linear ordering, such as
Integer. This type is bounded, it has a start and a finish (least and
greatest possible member). In general, any Magnitude can be used as a base
of a Range type.

Member The type associated with membership in a specific set of objects.

Singleton The type of a single object, as distinct from any other object.

Clone The type of an object and its CLONE FAMILY, the set of objects that are direct
copies of it.

Array The type representing all arrays, as parametrized by an element type and
a length.

Block The type representing code closures of a given (optional) input and output
signature.

3.11.2 Operations

Types may be combined in various ways, including union:, intersection:, and
extended via derive and deriveWith: which preserve type constraints on the
derivations.

3.11.3 Type Annotations

Local slot specifiers in a Method header as well as input slot specifiers may have
types optionally declared within the header. Within a method declaration expres-
sion, the input slots may be redundantly specified in the header as well as in the
dispatch expression. However, if this is done, the header’s specifier needs to be
specified as an input slot and if multiple input slot types are specified, they should
be specified in order.

The syntax is similar to that for @-based dispatch notation: follow the slot name
with the bang character “!” and then a type expression, which may be a primitive
or derived type. For example,

[| :foo!Integer bar | bar: (foo raisedTo: 3).
foo + bar] applyWith: 4.3.

Type annotations don’t use primitive expressions: the evaluator doesn’t have a
library of pre-built types at its disposal. Instead, Type annotation expressions are
evaluated within the namespace named Types accessible from the lobby. For this
reason, user-defined named types should be installed in some place accessible
through the Types path.
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3.11.4 Type Inference

Type-inference on syntax trees is driven by calling inferTypes on the Syntax Node
in question. This will process type information already annotated to produce de-
rived annotations on related nodes.

Also, there is a facility to extend the type-inference capability per method. To
explain, each Type object comes with a rules object slot that is dual to the traits
delegate object; rules delegate as the traits do but do not confer to the types their
methods. Instead, they are used by the inference system transparently to allow
for more intelligent specialization. To wit:

_@((Member of: {True. False}) rules) ifTrue: then@(Block rules)
ifFalse: else@(Block rules)

[
then returnType union: else returnType

].

is a type-inference extension method for #ifTrue:ifFalse: for any boolean and
a pair of blocks, that the return type will be in the union of the blocks’ return
types.

3.12 Modules

A simple module system is provided, designed to capture the bare essentials of
a collection of coherent code. The current module system is just associated with
each library file for simplicity’s sake. The methods provides: and requires:
applied to the context will add to and check against a global features sequence
respectively, and missing requirements are noted as the code is loaded. Again for
simplicity, features currently contains and expects Symbols. The load: method
also invokes a hook to set the currentModule in its context.

3.12.1 Types

Module a group of objects and methods, along with some information about their
definitions. Modules can also provide privacy boundaries, restricting certain
methods’ accessibility outside of the module.

FileModule a module that has been built from source code from a file.

System a collection of modules that together provide some larger service. Systems
notably support operations on them to control large-scale libraries.
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3.12.2 Operations

Module newEmpty creates a new Module with no contents.

Module newForFileNamed: creates a new FileModule for the given file name.

load loads the module or system.

build (re-)builds the module or system.

provide: adds the element to the module’s provision collection.

provides: declares a collection’s elements to be provided by the current module.

requires: declares a collection’s elements to be required by the current context.
If any are not found, an error is raised.6

import:from: adds an element to the import collection of the current module
from the other one’s provisions. If it’s not provided by the other module, an
error is raised.

importAll:from: adds a collection’s elements to the import collection of the cur-
rent module from the other one’s provisions. If it’s not provided by the other
module, an error is raised.

4 Style Guide

Slate provides an unusual opportunity to organize programs and environments in
unique ways, primarily through the unique object-centered combination of pro-
totypes and multiple-argument dispatch. This section provides a guide to the
generally recommended style of developing in Slate, to promote a better under-
standing of the system and its usage.

4.1 Environment organization

4.1.1 Namespaces

New namespaces should be used for separate categories of concepts. Occasion-
ally, these are the kind that should automatically included in their enclosing
namespace (which can be further inherited up to the lobby). This is done sim-
ply by placing the new namespace object in a delegate slot.

6In the future, automatic querying and loading an appropriate module could be added.
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4.1.2 Exemplars or Value Objects

These represent objects such as specific colors with well-known names, or clone-
able objects with useful default values. Generally these should have capitalized
names if they are cloneable, and can be capitalized or lowercase if not. For cases
with a large group of such value objects, like colors, there usually should involve
a separate namespace to avoid cluttering up the surrounding one. This also helps
with naming the use of a value if the intuitive interpretation of its name is depen-
dent on context.

4.2 Naming Methods

One of the primary benefits and peculiarities of the Smalltalk family’s style of
method syntax is that it provides an opportunity to name one’s protocols using
something resembling a phrase. Usually, it is recommended to re-use protocols
whenever describing similar behaviors, as an aid to the user’s memory in matching
functionality to a name to call; in some exceptional situations, different protocols
are helpful when there is more than one desired algorithm or behavior to provide
for a kind of object. Here are some general practices that Slate uses which have
been common in Smalltalk practice for years.

4.2.1 Attributes

Attributes are perhaps the simplest to name of all, in that they are generally
nouns or noun phrases of some sort, whether used as direct slots or methods
which calculate a property dynamically.

4.2.2 Queries

Methods which test for some fact or property about a single object are gener-
ally given a “whether”-style phrase. For example, myCar isRed answers whether
one’s car is red. Slate offers an additional idiom over this particular style, in that
myCar color is: Red is also possible, since is: looks at both the subject and
the object of the query.

4.2.3 Creating

While the method clone is the core of building new objects in Slate, rather than
instantiating a class, there is still the need to provide an idiom for delivering
optional attributes to one’s new objects. Generally, these methods should start
with new- as a prefix to help the reader and code user to know that the original
object will not be modified, and that the result is a new, separate individual. These
methods are usually keyword methods, with each of the keywords describing each
option, whether literally naming an attribute, or simulating a grammatical phrase
using prepositions.
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4.2.4 Performing Actions

The most interesting protocols are akin to commands, where one addresses the
objects in question with a phrase that suggests performing some action. This
should usually have one key verb for each major component of the action (there
is usually just one action per method, but select:thenCollect:, for example,
performs two), and prepositions or conjunctions to relate the verbs and nouns.

4.2.5 Binary Operators

These are perhaps the most controversial of any programming language’s proto-
cols. In the Smalltalk family of syntax, there are no precedence orderings between
operators of different names, so the issues with those do not arise. However, it
is very tempting for the library author to re-use mathematical symbols for her
own domain, to allow her users to have a convenient abbreviation for common
operations. While this benefits the writer of code which uses her library, there are
domains and situations that punish the reader of the code that results.
For example, mathematical addition and multiplication symbols, “+” and “*”, are
generally associative and commutative. That is, repeated calls to these should
be able to re-order their arguments arbitrarily and achieve the same result. For
example, 3 + 4 + 5 = 4 + 3 + 5 = 5 + 4 + 3. However, string concatenation (as
an example) is not commutative; we cannot re-order the arguments and expect
the same result, i.e. "gold"+"fish"="goldfish" , whereas "fish"+"gold"="fishgold" .
Because concatenation is associative, however, we can re-use the punctuation
style of the semi-colon “;” and achieve intuitive results. This general style of
reasoning should be applied wherever this type of operator name re-use could
arise.

4.3 Instance-specific Dispatch

Often there are situations whether the user will want to specialize a method in
some argument position for a specific object. There are various reasons to do this,
and various factors to consider when deciding to do so.

4.3.1 Motivations

Two common patterns where the developer wants to specialize to a single object
emerge from using Slate. First, there are domain objects which naturally have
special non-sharable behavior. For example, True is clearly a particular object
that helps define the semantics of the whole system, by representing mechanical
truth abstractly. In other situations, the same pattern occurs where one has a
universal concept, or locally an absolute concept within a domain.
Second, there are situations whether the user is demonstratively modifying the
behavior of some thing in order to achieve some prototype that behaves in some
situation as they desire. Depending on whether the user decides to share this
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behavior or not, the instance-specific behavior may or may not migrate to some
shared Traits object. In either case, this is an encouraged use of objects and
methods within Slate.

4.3.2 Limitations

There are factors which weigh against the use of dispatch on objects with non-
shared behaviors. Generally, these just amount to a few simple reasons. First,
the behavior will not be shared, which is obvious, but sometimes not clear to the
author. Second, the author may mistake an object for its value or attributes, such
as Strings, which are not unique per their value, and so get unexpected results
if they dispatch on a String instance. The same is true for all literals of that
nature, with the exception of Symbols.

The general rule for defining a method on an instance which is a lightweight
“value” object, is that the object must be reliably re-identifiable, as Symbols are
for the language, or through naming paths from the lobby or some other object
that the user is given access to, such as a method argument. Otherwise, the user
must be careful to hang on to the identity of the given object, which offsets any
polymorphism gains and exposes implementation details unnecessarily.

4.4 Organization of Source

The nature (and current limitations) of defining objects, relations, and the meth-
ods that operate over them require a certain ordering at this point which is worth
mentioning. The central point of constraints is the definition of dispatching meth-
ods: these methods must have their dispatch targets available at the time they are
evaluated. Since there is no late-binding yet of dispatch expressions, generally the
basic construction of one’s traits and prototype definitions must all occur before
defining methods which dispatch to them. The definition needs merely to intro-
duce the actual object that will be used later; other features of the objects, such
as what other methods are defined upon it, are late-bound and will not hinder a
method-dispatch expression.
In general, however, it is recommended to define methods in a bottom-up fashion:
that more basic utilities should be introduced before the methods that use them.
This allows the user (and the author) of the code to read the program sequentially
as a document and have some understanding of a program’s components when
only the name of the component is seen. Of course, this is not always possible,
but it helps often enough.
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4.5 Type-Annotating Expressions
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